Journal of Organometallic Chemistry, 388 (1990) 187-193 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20634

Photochemisch induzierte [2 + 2]-Cycloadditionen von Alkenen und Dienen mit der S-S-Bindung des *nido*-Clusters $[(CO)_3FeS]_2$

Anja Kramer und Ingo-Peter Lorenz *

Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-7400 Tübingen (B.R.D.)

(Eingegangen den 4. Dezember 1989)

Abstract

The alkenes 1-pentene and 2-pentene and the dienes 1,3-butadiene and 1,4-pentadiene are inserted into the S–S-bond of the *nido*-cluster $[(CO)_3FeS]_2$ (1) by photochemically induced [2 + 2]-cycloaddition. The differently functionalized 1,2ethanedithiolato ligands that result can act as chelating and μ_2 -bridging ligands to the Fe₂(CO)₆-complex fragment. The novel complexes 2–5 have been characterized by IR, ¹H and ¹³C{¹H} NMR and mass spectroscopy.

Zusammenfassung

Sowohl die Alkene 1-Penten und 2-Penten als auch die Diene 1,3-Butadien und 1,4-Pentadien werden über photochemisch induzierte [2 + 2]-Cycloadditionsreaktionen in die S-S-Bindung des *nido*-Clusters $[(CO)_3FeS]_2$ (1) insertiert. Dadurch lassen sich unterschiedlich funktionalisierte 1,2-Ethandithiolatoliganden aufbauen, die als Chelat- und μ_2 -Brückenliganden mit dem Fe₂(CO)₆-Komplexfragment verknüpft sind. Die neuen Komplexe 2-5 werden durch IR-, ¹H- und ¹³C{¹H}-NMR- und Massenspektroskopie charakterisiert.

Einleitung

Die Reaktivität von $[(CO)_3FeS]_2$ (1) war bereits Gegenstand zahlreicher Untersuchungen; 1 ist thermisch (> 50°) instabil und kann deshalb durch Umsetzungen mit reaktiven Dimeren wie $Co_2(CO)_8$ [1-3], $[CpNiCO]_2$ [3] und $[CpMo(CO)_2]_2$ [4,5] unter Transfer des $(CO)_3FeS$ -Fragments für gezielte Clustersynthesen eingesetzt werden. Carbonylliganden lassen sich durch Phosphane substituieren [6], und ungesättigte Moleküle wie GeCl₂ in die Fe-Fe-Bindung von 1 einschieben [7,8]. Am auffälligsten erweist sich jedoch nach Untersuchungen von Sevferth et al. die Reaktivität der S-S-Bindung von 1; sie wird durch Natrium oder Hydride sehr leicht reduziert [9] oder durch Carbanionen nucleophil gespalten [10]. Als metallorganisches Disulfid zeigt 1 demnach die typischen Reaktionen organischer Disulfide [11]. Diese Analogie haben Seyferth et al. als erste erkannt und vor allem Reduktionsreaktionen beschrieben [12]; durch anschliessende Protonierung [13] bzw. Alkylierung [14] oder Salzmetathese mit Dihalogenverbindungen [9] lassen sich daraus Thiole bzw. Thioether oder Dithiolato-Komplexe synthetisieren. In einer sehr neuen Arbeit werden umfangreiche Insertionsreaktionen koordinativ ungesättigter Komplexfragmente in die S-S-Bindung von 1 beschrieben und mit MO-Berechnungen [15] begründet [16]. Schon sehr viel früher haben Seyferth et al. auch über photoinduzierte Insertionsreaktionen einiger aktivierter Alkine und Alkene in die S-S-Bindung von 1 kurz berichtet [17]; durch eigene Untersuchungen haben wir diese Ergebnisse nicht bestätigen können. Vielmehr gelang uns stattdessen die Insertion nichtaktivierter Alkene und Diene. Über erste Ergebnisse mit Insertionen von Ethen. Ethin und CO und die Molekülstrukturen von [(CO)₃FeSCH₂]₂ [18] und [(CO)₃Fe]₂SCH₂CH₂S(O) [19] haben wir früher berichtet; im folgenden beschreiben wir unsere Untersuchungen zur Synthese und Struktur der Insertionsprodukte weiterer Alkene und Diene.

Resultate und Diskussion

Um die Allgemeingültigkeit der o.g. photoinduzierten Insertionsreaktionen zu beweisen, wurden nun in systematischer Weise weitere ungesättigte Verbindungen mit 1 umgesetzt, eingesetzt wurden zunächst die längerkettigen Alkene 1- und 2-Penten. Hierzu wurden Lösungen von 1 mit 1- bzw. 2-Penten in THF ca. 1 h in einer speziellen Photolyseapparatur belichtet, die erhaltenen Lösungen abgetrennt und säulenchromatographisch gereinigt. Die gemäss Gl. 1 und 2 entstehenden isomeren Insertionsprodukte 2 und 3 fallen in geringer Ausbeute als Öle an, die erst nach längerer Zeit zu einem feinkristallinen Pulver erstarren, sie sind sauerstoffempfindlich und lösen sich in allen gängigen organischen Solventien. Entsprechende Versuche mit sterisch anspruchsvolleren bzw. aktivierten Alkenen, wie beispielsweise Maleinsäuredimethylester bzw. Acetylendicarbonsäuredimethylester, schlugen dagegen fehl.

Das LUMO von 1 besitzt S-S- π^{ab} -Charakter [15] und ist verantwortlich für die leichte Spaltung der S-S-Bindung bei Reduktions- und Cycloadditionsreaktionen. Nach den Woodward-Hoffmann-Regeln [20] ist die [2+2]-Cycloaddition eine photochemische, die [4+2]-Cycloaddition eine thermisch erlaubte Reaktion. 1 wurde deshalb mit dem konjugierten Dien 1,3-Butadien, ohne zu belichten, unter

vorsichtiger Temperaturerhöhung bis ca. $50 \,^{\circ}$ C längere Zeit gerührt. Es liess sich jedoch keine erkennbare Umsetzung nachweisen. Auch eine weitere Temperaturerhöhung führte nicht zum [4 + 2]-Cycloadditionsprodukt, sondern lediglich zur Zersetzung von 1. Deshalb wurde die Umsetzung in einer Photolyseapparatur wiederholt, um bei möglicher *d*-Orbitalbeteiligung doch eine [4 + 2]-Cycloaddition gemäss Gl. 3 zu erzwingen. Nach der üblichen Aufarbeitung liess sich nicht 4a, sondern wieder nur das [2 + 2]-Cycloadditionsprodukt 4b gemäss Gl. 4 nachweisen. Auch die anschliessende Umsetzung von 1 mit 1,4-Pentadien unter Photolysebedingungen ergab gemäss Gl. 5 lediglich das [2 + 2]-Cycloadditionsprodukt als braunen Feststoff 5; er enthält eine in δ -Position ungesättigte Seitenkette und is instabiler als 4b.

Von den Verbindungen 2–5 wurden jeweils die IR-, ¹H- und ¹³C{¹H}-NMRsowie Massenspektren aufgenommen (vgl. Tab. 1); in Fig. 1 sind exemplarisch die ¹H- und ¹³C{¹H}-NMR-Spektren von 4b wiedergegeben.

Mit Ausnahme von Komplex 5 werden stets die erwarteten Molekülpeaks in den FD-Massenspektren registriert; bei 5 tritt in der ungesättigten Seitenkette offensichtlich Fragmentierung unter bevorzugter Etheneliminierung auf, weshalb lediglich das Signal $m/e = 384 = [M - C_2H_4]^+$ erscheint.

Die IR-Spektren von 2-5 belegen im ν (CO)-Bereich deutlich die Symmetrieerniedrigung von $C_{2\nu}$ nach C_s im Vergleich zum Edukt 1 bzw. zum symmetrischen Insertionsprodukt [(CO)₃FeSCH₂]₂ [18]; so treten stets 5-6 ν (CO)-Absorptionsbanden für die 6 Carbonylgruppen auf, Absorptionslage und -muster sind untereinander praktisch identisch.

Die ¹H- und ¹³C{¹H}-NMR-Spektren der Komplexe **2–5** lassen sich durch entsprechenden Vergleich der charakteristischen Frequenzbereiche für die CH₃-, CH₂- und CH-Baugruppen ohne grössere Schwierigkeit zuordnen; die Protonensignale erscheinen stets unaufgelöst als Multipletts, die Signale in den ¹³C{¹H}-Spektren als Singuletts. Stellvertretend in der Reihe **2–5** sollen die ¹H- und ¹³C{¹H}-NMR-Spektren des 1,2-Buten(3)dithiolato-Komplexes **4b** diskutiert werden.

Das ¹H-NMR-Spektrum von **4b** weist vier komplexe Multipletts auf; deutlich erkennbar und interpretierbar sind die ersten drei Signalgruppen für die Protonen von C(1) und C(2). Die beiden geminalen C(1)-ständigen Protonen H_a bzw. $H_{a'}$ sind chemisch und magnetisch unterschiedlich, koppeln miteinander und mit dem C(2)-ständigen H_b -Atom (Dublett von Dublett bei 1.89–2.16 bzw. 2.58–2.85 ppm). Das Proton H_b koppelt sowohl mit den beiden $H_{a,a'}$ -Protonen als auch mit dem H_c -Atom, woraus das Multiplett bei 3.17–3.42 resultiert. Aufgrund ähnlicher Kopplungen, aber schwächerer Kopplungskonstanten erhält man für die H_c - und $H_{d,d'}$ -Protonen der ungesättigten Seitenkette ein sehr breites, linienreiches Multiplett bei 5.26–5.80 ppm. Bei dem Spektrum von **4b** handelt es sich um ein ABMX-Spektrum.

¹ H-NMR	¹³ C{ ¹ H}-NMR	$IR(cm^{-1})$	FD-MS
bindung δ (ppm) "	δ (ppm) ⁴	ν(CO) ^σ	m/e
2 0.82–1.03 m CH ₃ (e)	13.64 C(5)H ₃	2071w	414
$1.10-1.31 \text{ m CH}_2(d)$	13.79 C(4)H ₂	2031 sst	$[M]^+$
$1.60-1.90 \text{ m CH}_2(c)$	22.66 C(3)H ₂	2002 sst	
$2.48 - 2.88 \text{ m CH}_2(a)$	39.16 C(1)H ₂	1988 st	
3.35-3.62 m CH(b)	54.23 C(2)H	1978 w	
	208.32 CO		
$0.78 - 1.02 \text{ m CH}_3(e)$	13.82 C(5)H ₃	2071 m	414
1.13-1.29 m CH ₃ (a)	19.09 C(1)H ₃	2030 sst	[<i>M</i>] ⁺
$1.32 - 1.68 \text{ m CH}_2(d)$	26.24 C(4)H ₂	2003 sst	
2.49-2.76 m CH(b)	49.55 C(2)H	1987 sst	
2.86-3.10 m CH(c)	57.77 C(3)H	1976 m	
		1951 w	
1.89~2.16 m CH ₂ (a)	40.7 C(1)H ₂	2073 m	398
$2.58 - 2.85 \text{ m CH}_{2}(a')$	55.9 C(2)H	2034 sst	[M] ⁺
3.17-3.42 m CH(b)	118.17 C(4) H ₂	2005 sst	
$5.16-5.80 \text{ m CH}_{2}(dd')$	136.70 C(3)H	1990 sst	
+ CH(c)	208.20 CO	1981 m	
	208.35 CO		
$1.65 - 2.02 \text{ m CH}_{2}(a)$	41.04 C(1)H ₂	2072 m	384
2.08-2.45 m CH(b)	41.39 C(3)H ₂	2033 sst	$[M - C_2 H_4]^+$
$2.48 - 2.95 \text{ m CH}_{2}(c)$	53.44 C(2)H	2003 sst	
$4.87 - 5.25 \text{ m CH}_{2}(e)$	117.90 C(5)H ₂	1989 sst	
5.43-6.05 m CH(d)	134.95 C(4)H	1979 m	
	208.46 CO	1957 w	
	208.66 CO		
	¹ H-NMR δ (ppm) ^a 0.82–1.03 m CH ₃ (e) 1.10–1.31 m CH ₂ (d) 1.60–1.90 m CH ₂ (c) 2.48–2.88 m CH ₂ (a) 3.35–3.62 m CH(b) 0.78–1.02 m CH ₃ (e) 1.13–1.29 m CH ₃ (e) 1.13–1.29 m CH ₃ (a) 1.32–1.68 m CH ₂ (d) 2.49–2.76 m CH(b) 2.86–3.10 m CH(c) 1.89–2.16 m CH ₂ (a) 2.58–2.85 m CH ₂ (a') 3.17–3.42 m CH(b) 5.16–5.80 m CH ₂ (d)' + CH(c) 1.65–2.02 m CH ₂ (a) 2.08–2.45 m CH ₂ (c) 4.87–5.25 m CH ₂ (c) 5.43–6.05 m CH(d)	1 H-NMR 13 C{ 1 H)-NMR δ (ppm) " δ (ppm) " 0.82-1.03 m CH ₃ (e) 13.64 C(5)H ₃ 1.10-1.31 m CH ₂ (d) 13.79 C(4)H ₂ 1.60-1.90 m CH ₂ (c) 22.66 C(3)H ₂ 2.48-2.88 m CH ₂ (a) 39.16 C(1)H ₂ 3.35-3.62 m CH(b) 54.23 C(2)H 208.32 CO 0.78-1.02 m CH ₃ (e) 1.13-1.29 m CH ₃ (a) 19.09 C(1)H ₃ 1.32-1.68 m CH ₂ (d) 26.24 C(4)H ₂ 2.49-2.76 m CH(b) 49.55 C(2)H 2.86-3.10 m CH ₂ (a) 40.7 C(1)H ₂ 2.58-2.85 m CH ₂ (a') 55.9 C(2)H 3.17-3.42 m CH(b) 118.17 C(4) H ₂ 5.16-5.80 m CH ₂ (dd') 136.70 C(3)H + CH(c) 208.20 CO 208.35 CO 1.65-2.02 m CH ₂ (a) 41.04 C(1)H ₂ 2.08-2.45 m CH(b) 43.70 C(3)H 4.07 C(3)H ₂ 2.48-2.95 m CH ₂ (c) 53.44 C(2)H 4.87-5.25 m CH ₂ (e) 117.90 C(5)H ₂ 5.43-6.05 m CH(d) 134.95 C(4)H 208.46 CO 208.66 CO	¹ H-NMR $^{13}C{^1H}-NMR$ IR (cm ⁻¹) ν(CO) b δ (ppm) a δ (ppm) a ν (CO) b0.82-1.03 m CH ₃ (e)13.64 C(5)H ₃ 2071w1.10-1.31 m CH ₂ (d)13.79 C(4)H ₂ 2031 sst1.60-1.90 m CH ₂ (c)22.66 C(3)H ₂ 2002 sst2.48-2.88 m CH ₂ (a)39.16 C(1)H ₂ 1988 st3.35-3.62 m CH(b)54.23 C(2)H1978 w208.32 CO0.78-1.02 m CH ₃ (e)13.82 C(5)H ₃ 2071 m1.13-1.29 m CH ₃ (a)19.09 C(1)H ₃ 2030 sst1.32-1.68 m CH ₂ (d)26.24 C(4)H ₂ 2003 sst2.49-2.76 m CH(b)49.55 C(2)H1987 sst2.86-3.10 m CH ₂ (a)40.7 C(1)H ₂ 2073 m2.58-2.85 m CH ₂ (a')55.9 C(2)H2034 sst3.17-3.42 m CH(b)118.17 C(4) H ₂ 2005 sst5.16-5.80 m CH ₂ (d)'136.70 C(3)H1990 sst+ CH(c)208.20 CO1981 m208-2.45 m CH ₂ (a)41.04 C(1)H ₂ 2072 m2.08-2.45 m CH ₂ (a)41.04 C(2)H2003 sst4.87-5.25 m CH ₂ (c)53.44 C(2)H2003 sst4.87-5.25 m CH ₂ (c)134.95 C(4)H1979 m208.46 CO1957 w208.66 CO

Ausgewählte spektroskopische Daten von 2-5

Tabelle 1

^a In CDCl₃. ^b In n-Hexan.

Das ${}^{13}C{}^{1}H$ -NMR-Spektrum von 4b weist 4 Singulettsignale für die vier unterschiedlichen C-Atome des 1,2-Buten(3)dithiolatoliganden auf; sie werden mit 40.7 ppm der C(1)H₂-, mit 55.9 ppm der C(2)H-, mit 118.17 ppm der C(4)H₂- und mit 136.7 ppm der C(3)H-Gruppe zugeordnet. Entsprechend dem unsymmetrischen Aufbau dieser Verbindungklasse werden zwei Signale bei $\delta \approx 208$ ppm für die Carbonylgruppen an den beiden unterschiedlichen Eisenzentren registriert.

Experimentelles

Alle Umsetzungen wurden in gereinigter Argonatmosphäre unter Ausschluss von Luftsauerstoff und Feuchtigkeit (Schlenkrohr-Technik) durchgeführt. Die Lösungsmittel wurden getrocknet und mit Argon gesättigt, THF wurde über LiAlH₄ frisch destilliert.

Für die Photosynthesen diente ein Quecksilber-Hochdruckbrenner TQ 150/Z1 (innenliegende Tauchlampe) der Quarzlampengesellschaft Hanau. Zur Säulenchromatographie wurde ausgeheiztes stickstoffgesättigtes Kieselgel-60 (Merck Art.-Nr. 7734) verwendet.

Das zentrale Edukt $[(CO)_3FeS]_2$ (1) wurde nach der Methode von Rauchfuss et al. [21] dargestellt. 1-Penten (Merck), 2-Penten (Janssen), 1,3-Butadien und 1,4-Pentadien (Aldrich) wurden käuflich erworben.

Für spektroskopische Messungen dienten die folgenden Geräte: IR: Perkin-Elmer-Spektralphotometer, Typ 598 mit Datenstation 3600; NMR: Bruker-Gerät AC 80 (Messfrequenzen 80.13 bzw. 20.15 MHz; interner Standard TMS); MS: Varian MAT 711 A (FD: 8 kV, 50°C)

Allgemeine Arbeitsvorschrift für die Komplexe 2-5

Der *nido*-Cluster $[(CO)_3 \text{FeS}]_2$ (1) wird in 100 ml THF gelöst und anschliessend mit dem jeweiligen Alken bzw. Dien versetzt. Die Reaktionslösung wird im Temperaturbereich von -30 °C bis 40 °C zwischen 45 min und mehreren Stunden belichtet. Danach engt man die Lösung im Hochvakuum zur Trockene ein. Das Produktgemisch wird in wenig n-Hexan gelöst und säulenchromatographisch mit Kieselgel/n-Hexan aufgetrennt. Ein schwarzer Rückstand verbleibt auf der Säule. Nicht umgesetzte Ausgangsverbindung 1 gewinnt man als erste Fraktion zurück und anschliessend das jeweilige Produkt in der zweiten Zone, die zur Trockene eingeengt und im Vakuum getrocknet wird.

Hexacarbonyl(μ -1,2-*pentandithiolato-S*,*S*)*dieisen* (2). 992.6 mg (2.88 mmol) 1 und 0,5 ml (4.56 mmol) 1-Penten; 1 h bei 25 bzw. -10° C, braunes Pulver, Ausbeute 82.6 mg (6.9%). Gef.: C, 31.51; H, 2.91; S, 14.18. C₁₁H₁₀Fe₂O₆S₂ (414.01) ber.: C, 31.91; H, 2.43; S, 15.49%.

Hexacarbonyl(μ -2,3-*pentandithiolato-S*,*S*)*dieisen* (3). 549.6 mg (1.59 mmol) 1 und 1 ml (9.27 mmol) 2-Penten; 1/2 h bei -25 °C, braunes Pulver, Ausbeute 59.1 mg (8.9%). Gef.: C, 31.60; H, 3.12; S, 13.22. C₁₁H₁₀Fe₂O₆S₂ (414.01) ber.: C, 31.91; H, 2.43; S, 15.49%.

 μ -1,2-Buten(3)dithiolato-S,S(hexacarbonyl)dieisen (4b). 322.2 mg (0.94 mmol) 1 und 0.5 ml (-30°C) 1,3-Butadien, 1.5 h bei -30°C, öliges, braunes Produkt, Ausbeute 40.1 mg (10.8%). Gef.: C, 31.84; H, 2.15; S, nicht exakt bestimmbar. C₁₀H₆Fe₂O₆S₂ (397.97) ber.: C, 31.18; H, 1.52; S, 16.11%.

Hexacarbonyl(μ -1,2-penten(4)dithiolato-S,S)dieisen (5). 460.4 mg (1.34 mmol) **1** und 0.3 ml (2.90 mmol) 1,4-Pentadien. Beim Eluieren mit n-Hexan erhielt man neben der braunen Produktfraktion die hellrote Ausgangsverbindung **1** und eine dunkelrote Fraktion, die sich nach spektroskopischen Untersuchungen als Fe₃S₂(CO)₉ erwies; 45 min bei - 25°C, braunes Pulver; Ausbeute 49.5 mg (8.97%). Gef.: C, 28.10; H, 2.42; S, 14.65. C₁₁H₈Fe₂O₆S₂ (411.99) ber.: C, 32.07; H, 1.96; S, 15.56%.

Dank

Für die finanzielle Unterstützung unserer Untersuchungen danken wir dem Fonds der Chemischen Industrie, für die Aufnahmen der NMR-Spektren Frau M. Engel.

Literatur

- 1 S.A. Kattab, L. Markó, G. Bor und B. Markó, J. Organomet. Chem., 1 (1964) 373.
- 2 H. Vahrenkamp und E.J. Wucherer, Angew. Chem., 93 (1981) 715; Angew. Chem. Int. Ed. Engl., 20 (1981) 680.
- 3 D. Seyferth, R.S. Henderson, J.P. Fackler und A.M. Mazany, J. Organomet. Chem., 213 (1981) C21.
- 4 P. Braunstein, J.-M. Jud, M. Tiripicchio-Camellini und E. Sappa, Angew. Chem., 94 (1982) 318; Angew. Chem. Int. Ed. Engl., 21 (1982) 307.

- 5 P.D. Williams, M.D. Curtis, D.N. Duffy und W.M. Butler, Organometallics, 2 (1983) 165.
- 6 W. Hieber und A. Zeidler, Z. Anorg. Chem., 329 (1964) 92.
- 7 N.S. Nametkin, V.D. Tyurin, G.G. Aleksandrov, O.V. Kuz'min, A.I. Nekhaev, V.G. Andrianov, M. Marlonov und Y.T. Struchkov, Izv. Akad. Nauk SSSR, Ser. Khim., (1979) 1353.
- 8 N.S. Nametkin, V.D. Tyurin und M.A. Kukina, Russ. Chem. Rev., 55 (1986) 439.
- 9 D. Seyferth, R.S. Henderson und L.-C. Song, Organometallics, 1 (1982) 125.
- 10 D. Seyferth, R.S. Henderson, L.-C. Song und G.B. Womack, J. Organomet. Chem., 292 (1985) 9.
- 11 E.E. Reich, Organic Chemistry of Bivalent Sulfur, Vol. 1, S. 377, Chemical Publishing Co, New York, 1960.
- 12 D. Seyferth und R.S. Henderson, J. Am. Chem. Soc., 101 (1979) 508.
- 13 D. Seyferth und R.S. Henderson, J. Organomet. Chem., 218 (1981) C34.
- 14 D. Seyferth und R.S. Henderson, J. Organomet. Chem., 192 (1980) C1.
- 15 R.L. DeKock, E.J. Baerends und R. Hengelmolen, Organometallics, 3 (1984) 289.
- 16 M. Cowie, R.L. DeKock, T.R. Wagenmaker, D. Seyferth, R.S. Henderson und M.G. Gallagher, Organometallics, 8 (1989) 119.
- 17 D. Seyferth und R.S. Henderson, J. Organomet. Chem., 182 (1979) C39.
- 18 J. Messelhäuser, I.-P. Lorenz, K. Haug und W. Hiller, Z. Naturforsch. B., 40 (1985) 1064.
- 19 J. Messelhäuser, K.U. Gutensohn, I.-P. Lorenz und W. Hiller, J. Organomet. Chem., 321 (1987) 377.
- 20 E. Breitmeier und G. Jung, Organische Chemie I, Thieme Verlag, Stuttgart, 1. Aufl., 1978, S. 561.
- 21 L.E. Bogan, D.A. Lesch und T.B. Rauchfuss, J. Organomet. Chem., 250 (1983) 429.